CGAL 6.1 - Polygon Mesh Processing
Loading...
Searching...
No Matches
Poisson_surface_reconstruction_3/poisson_reconstruction_example.cpp
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/Poisson_reconstruction_function.h>
#include <CGAL/Mesh_triangulation_3.h>
#include <CGAL/Mesh_complex_3_in_triangulation_3.h>
#include <CGAL/Mesh_criteria_3.h>
#include <CGAL/Labeled_mesh_domain_3.h>
#include <CGAL/make_mesh_3.h>
#include <CGAL/facets_in_complex_3_to_triangle_mesh.h>
#include <CGAL/property_map.h>
#include <CGAL/IO/read_points.h>
#include <CGAL/compute_average_spacing.h>
#include <CGAL/Polygon_mesh_processing/distance.h>
#include <boost/iterator/transform_iterator.hpp>
#include <vector>
#include <fstream>
// Types
typedef Kernel::FT FT;
typedef Kernel::Point_3 Point;
typedef Kernel::Vector_3 Vector;
typedef std::pair<Point, Vector> Point_with_normal;
typedef Kernel::Sphere_3 Sphere;
typedef std::vector<Point_with_normal> PointList;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;
typedef CGAL::Poisson_reconstruction_function<Kernel> Poisson_reconstruction_function;
typedef CGAL::Mesh_complex_3_in_triangulation_3<Tr> C3t3;
typedef CGAL::Mesh_criteria_3<Tr> Mesh_criteria;
int main(void)
{
// Poisson options
FT sm_angle = 20.0; // Min triangle angle in degrees.
FT sm_radius = 30; // Max triangle size w.r.t. point set average spacing.
FT sm_distance = 0.375; // Surface Approximation error w.r.t. point set average spacing.
// Reads the point set file in points[].
// Note: read_points() requires an iterator over points
// + property maps to access each point's position and normal.
PointList points;
if(!CGAL::IO::read_points(CGAL::data_file_path("points_3/kitten.xyz"), std::back_inserter(points),
CGAL::parameters::point_map(Point_map())
.normal_map (Normal_map())))
{
std::cerr << "Error: cannot read file input file!" << std::endl;
return EXIT_FAILURE;
}
// Creates implicit function from the read points using the default solver.
// Note: this method requires an iterator over points
// + property maps to access each point's position and normal.
Poisson_reconstruction_function function(points.begin(), points.end(), Point_map(), Normal_map());
// Computes the Poisson indicator function f()
// at each vertex of the triangulation.
if ( ! function.compute_implicit_function() )
return EXIT_FAILURE;
// Computes average spacing
FT average_spacing = CGAL::compute_average_spacing<CGAL::Sequential_tag>
(points, 6 /* knn = 1 ring */,
CGAL::parameters::point_map (Point_map()));
//Computes implicit function bounding sphere radius.
Sphere bsphere = function.bounding_sphere();
FT radius = std::sqrt(bsphere.squared_radius());
FT sm_sphere_radius = 5.0 * radius;
FT sm_dichotomy_error = sm_distance*average_spacing/1000.0; // Dichotomy error must be << sm_distance
// Defines surface mesh generation criteria
Mesh_criteria criteria(CGAL::parameters::facet_angle = sm_angle,
CGAL::parameters::facet_size = sm_radius*average_spacing,
CGAL::parameters::facet_distance = sm_distance*average_spacing);
// Defines mesh domain
Mesh_domain domain = Mesh_domain::create_implicit_mesh_domain(function, bsphere,
CGAL::parameters::relative_error_bound(sm_dichotomy_error / sm_sphere_radius));
// Generates mesh with manifold option
C3t3 c3t3 = CGAL::make_mesh_3<C3t3>(domain, criteria,
.manifold_with_boundary());
const Tr& tr = c3t3.triangulation();
if(tr.number_of_vertices() == 0)
return EXIT_FAILURE;
// saves reconstructed surface mesh
std::ofstream out("kitten_poisson-20-30-0.375.off");
Polyhedron output_mesh;
CGAL::facets_in_complex_3_to_triangle_mesh(c3t3, output_mesh);
out << output_mesh;
// computes the approximation error of the reconstruction
double max_dist =
(output_mesh,
CGAL::make_range (boost::make_transform_iterator
boost::make_transform_iterator
4000);
std::cout << "Max distance to point_set: " << max_dist << std::endl;
return EXIT_SUCCESS;
}
double approximate_max_distance_to_point_set(const TriangleMesh &tm, const PointRange &points, const double precision, const NamedParameters &np=parameters::default_values())
returns an approximation of the distance between points and the point lying on tm that is the farthes...
Definition: distance.h:1252
unspecified_type no_exude()