#include <cassert>
 
#include <CGAL/QP_models.h>
#include <CGAL/QP_functions.h>
 
#ifdef CGAL_USE_GMP
#else
#endif
 
<int**,                                                
 int*,                                                 
 int*>                                                 
Program;
 
 
int main() {
  int  Ax1[] = { 1, -1};                        
  int  Ax2[] = {-2,  1};                        
  int*   A[] = {Ax1, Ax2};                      
  int    b[] = {-1, 2};                         
  int    c[] = {-1, -2};                        
 
  
  
  Program lp (2, 2, A, b, r, c);
 
  
 
  
  assert (s.is_unbounded());
  Solution::Unboundedness_certificate_iterator w =
    s.unboundedness_certificate_begin();
  
  assert (ET(w[0]) >= 0);
  assert (ET(w[1]) >= 0);
  
  assert (A[0][0] * ET(w[0]) + A[1][0] * ET(w[1]) <= 0);
  assert (A[0][1] * ET(w[0]) + A[1][1] * ET(w[1]) <= 0);
  
  assert (c[0] * ET(w[0]) + c[1] * ET(w[1]) < 0);
 
  return 0;
}
An object of class Nonnegative_linear_program_from_iterators describes a linear program of the form.
Definition: QP_models.h:314
An object of class Quadratic_program_solution represents the solution of a linear or convex quadratic...
Definition: QP_solution.h:65
Quadratic_program_solution< ET > solve_nonnegative_linear_program(const NonnegativeLinearProgram &lp, const ET &, const Quadratic_program_options &options=Quadratic_program_options())
This function solves a nonnegative linear program, using some exact Integral Domain ET for its comput...