CGAL 6.1 - Geometric Object Generators
Loading...
Searching...
No Matches
CGAL::Random_points_on_segment_2< Point_2, Creator > Class Template Reference

#include <CGAL/point_generators_2.h>

Definition

template<typename Point_2, typename Creator>
class CGAL::Random_points_on_segment_2< Point_2, Creator >

The class Random_points_on_segment_2 is an input iterator creating points uniformly distributed on a segment.

The default Creator is Creator_uniform_2<Kernel_traits<Point_2>::Kernel::RT,Point_2>.

Is model of
InputIterator
PointGenerator
See also
CGAL::Points_on_segment_2<Point_2>
CGAL::Random_points_in_disc_2<Point_2, Creator>
CGAL::Random_points_in_square_2<Point_2, Creator>
CGAL::Random_points_in_triangle_2<Point_2, Creator>
CGAL::Random_points_on_circle_2<Point_2, Creator>
CGAL::Random_points_on_square_2<Point_2, Creator>
Examples
Generator/random_segments1.cpp.

Types

typedef std::input_iterator_tag iterator_category
 
typedef Point_2 value_type
 
typedef std::ptrdiff_t difference_type
 
typedef const Point_2pointer
 
typedef const Point_2reference
 
 Random_points_on_segment_2 (const Point_2 &p, const Point_2 &q, Random &rnd=get_default_random())
 creates an input iterator g generating points of type Point_2 uniformly distributed on the segment from \( p\) to \( q\) (excluding \( q\)), i.e. \( *g == (1-\lambda)\, p + \lambda q\) where \( 0 \le\lambda< 1\).
 

Constructor & Destructor Documentation

◆ Random_points_on_segment_2()

template<typename Point_2 , typename Creator >
CGAL::Random_points_on_segment_2< Point_2, Creator >::Random_points_on_segment_2 ( const Point_2 p,
const Point_2 q,
Random rnd = get_default_random() 
)

creates an input iterator g generating points of type Point_2 uniformly distributed on the segment from \( p\) to \( q\) (excluding \( q\)), i.e. \( *g == (1-\lambda)\, p + \lambda q\) where \( 0 \le\lambda< 1\).

A single random number is needed from rnd for each point. The expressions to_double(p.x()) and to_double(p.y()) must result in the respective double representation of the coordinates of \( p\), and similarly for \( q\).