CGAL 6.1 - 2D and 3D Linear Geometry Kernel
|
Operations | |
A model of this concept must provide: | |
Comparison_result | operator() (const K::Point_3 &a, const K::Point_3 &b, const K::Point_3 &c, const K::FT &cosine) |
compares the angles \( \theta_1\) and \( \theta_2\), where \( \theta_1\) is the angle in \( [0, \pi]\) of the triangle \( (a, b, c)\) at the vertex b , and \( \theta_2\) is the angle in \( [0, \pi]\) such that \( cos(\theta_2) = cosine\). | |
Comparison_result | operator() (const K::Point_3 &a1, const K::Point_3 &b1, const K::Point_3 &c1, const K::Point_3 &a2, const K::Point_3 &b2, const K::Point_3 &c2) |
compares the angles \( \theta_1\) and \( \theta_2\), where \( \theta_1\) is the angle in \( [0, \pi]\) of the triangle \( (a1, b1, c1)\) at the vertex b1 , and \( \theta_2\) is the angle in \( [0, \pi]\) of the triangle \( (a2, b2, c2)\) at the vertex b2 . | |
Comparison_result | operator() (const K::Vector_3 &u1, const K::Vector_3 &v1, const K::Vector_3 &u2, const K::Vector_3 &v2) |
compares the angles \( \theta_1\) and \( \theta_2\), where \( \theta_1\) is the angle in \( [0, \pi]\) between the vectors \( u1\) and \( v1\), and \( \theta_2\) is the angle in \( [0, \pi]\) between the vectors \( u2\) and \( v2\). | |
Comparison_result Kernel::CompareAngle_3::operator() | ( | const K::Point_3 & | a, |
const K::Point_3 & | b, | ||
const K::Point_3 & | c, | ||
const K::FT & | cosine | ||
) |
compares the angles \( \theta_1\) and \( \theta_2\), where \( \theta_1\) is the angle in \( [0, \pi]\) of the triangle \( (a, b, c)\) at the vertex b
, and \( \theta_2\) is the angle in \( [0, \pi]\) such that \( cos(\theta_2) = cosine\).
a!=b && c!=b
. Comparison_result Kernel::CompareAngle_3::operator() | ( | const K::Point_3 & | a1, |
const K::Point_3 & | b1, | ||
const K::Point_3 & | c1, | ||
const K::Point_3 & | a2, | ||
const K::Point_3 & | b2, | ||
const K::Point_3 & | c2 | ||
) |
compares the angles \( \theta_1\) and \( \theta_2\), where \( \theta_1\) is the angle in \( [0, \pi]\) of the triangle \( (a1, b1, c1)\) at the vertex b1
, and \( \theta_2\) is the angle in \( [0, \pi]\) of the triangle \( (a2, b2, c2)\) at the vertex b2
.
a1!=b1 && c1!=b1 && a2!=b2 && c2!=b2
. Comparison_result Kernel::CompareAngle_3::operator() | ( | const K::Vector_3 & | u1, |
const K::Vector_3 & | v1, | ||
const K::Vector_3 & | u2, | ||
const K::Vector_3 & | v2 | ||
) |
compares the angles \( \theta_1\) and \( \theta_2\), where \( \theta_1\) is the angle in \( [0, \pi]\) between the vectors \( u1\) and \( v1\), and \( \theta_2\) is the angle in \( [0, \pi]\) between the vectors \( u2\) and \( v2\).