CGAL 6.1 - 2D and 3D Linear Geometry Kernel
|
AdaptableQuinaryFunction
CGAL::Weighted_point_3<Kernel>
ComputePowerProduct_3
for the definition of orthogonality for power distances. PowerSideOfOrientedPowerSphere_3
Operations | |
A model of this concept must provide: | |
CGAL::Bounded_side | operator() (const Kernel::Weighted_point_3 &p, const Kernel::Weighted_point_3 &q, const Kernel::Weighted_point_3 &r, const Kernel::Weighted_point_3 &s, const Kernel::Weighted_point_3 &t) |
Let \( {z(p,q,r,s)}^{(w)}\) be the power sphere of the weighted points \( (p,q,r,s)\). | |
CGAL::Bounded_side | operator() (const Kernel::Weighted_point_3 &p, const Kernel::Weighted_point_3 &q, const Kernel::Weighted_point_3 &r, const Kernel::Weighted_point_3 &t) |
returns the sign of the power test of t with respect to the smallest sphere orthogonal to p , q , and r . | |
CGAL::Bounded_side | operator() (const Kernel::Weighted_point_3 &p, const Kernel::Weighted_point_3 &q, const Kernel::Weighted_point_3 &t) |
returns the sign of the power test of t with respect to the smallest sphere orthogonal to p and q . | |
CGAL::Bounded_side | operator() (const Kernel::Weighted_point_3 &p, const Kernel::Weighted_point_3 &t) |
returns the sign of the power test of t with respect to the smallest sphere orthogonal to p . | |
CGAL::Bounded_side Kernel::PowerSideOfBoundedPowerSphere_3::operator() | ( | const Kernel::Weighted_point_3 & | p, |
const Kernel::Weighted_point_3 & | q, | ||
const Kernel::Weighted_point_3 & | r, | ||
const Kernel::Weighted_point_3 & | s, | ||
const Kernel::Weighted_point_3 & | t | ||
) |
Let \( {z(p,q,r,s)}^{(w)}\) be the power sphere of the weighted points \( (p,q,r,s)\).
This method returns:
ON_BOUNDARY
if t
is orthogonal to \( {z(p,q,r,s)}^{(w)}\),ON_UNBOUNDED_SIDE
if t
lies outside the bounded sphere of center \( z(p,q,r,s)\) and radius \( \sqrt{ w_{z(p,q,r,s)}^2 + w_t^2 }\) (which is equivalent to \( \Pi({t}^{(w)},{z(p,q,r,s)}^{(w)}) >0\)),ON_BOUNDED_SIDE
if t
lies inside this bounded sphere.The order of the points p
, q
, r
, and s
does not matter.
p, q, r, s
are not coplanar.If all the points have a weight equal to 0, then power_side_of_bounded_power_sphere_3(p,q,r,s,t)
== side_of_bounded_sphere(p,q,r,s,t)
.
CGAL::Bounded_side Kernel::PowerSideOfBoundedPowerSphere_3::operator() | ( | const Kernel::Weighted_point_3 & | p, |
const Kernel::Weighted_point_3 & | q, | ||
const Kernel::Weighted_point_3 & | r, | ||
const Kernel::Weighted_point_3 & | t | ||
) |
returns the sign of the power test of t
with respect to the smallest sphere orthogonal to p
, q
, and r
.
p, q, r
are not collinear. CGAL::Bounded_side Kernel::PowerSideOfBoundedPowerSphere_3::operator() | ( | const Kernel::Weighted_point_3 & | p, |
const Kernel::Weighted_point_3 & | q, | ||
const Kernel::Weighted_point_3 & | t | ||
) |
returns the sign of the power test of t
with respect to the smallest sphere orthogonal to p
and q
.
p
and q
have different bare points.