|
CGAL 6.1 - 2D and 3D Linear Geometry Kernel
|
AdaptableQuinaryFunction CGAL::Weighted_point_3<Kernel> ComputePowerProduct_3 for the definition of power distance. PowerSideOfBoundedPowerSphere_3 Operations | |
A model of this concept must provide: | |
| Oriented_side | operator() (const Kernel::Weighted_point_3 &p, const Kernel::Weighted_point_3 &q, const Kernel::Weighted_point_3 &r, const Kernel::Weighted_point_3 &s, const Kernel::Weighted_point_3 &t) const |
| Let \( {z(p,q,r,s)}^{(w)}\) be the power sphere of the weighted points \( (p,q,r,s)\). | |
| Oriented_side Kernel::PowerSideOfOrientedPowerSphere_3::operator() | ( | const Kernel::Weighted_point_3 & | p, |
| const Kernel::Weighted_point_3 & | q, | ||
| const Kernel::Weighted_point_3 & | r, | ||
| const Kernel::Weighted_point_3 & | s, | ||
| const Kernel::Weighted_point_3 & | t | ||
| ) | const |
Let \( {z(p,q,r,s)}^{(w)}\) be the power sphere of the weighted points \( (p,q,r,s)\).
Returns
ON_ORIENTED_BOUNDARY if t is orthogonal to \( {z(p,q,r,s)}^{(w)}\),ON_NEGATIVE_SIDE if t lies outside the oriented sphere of center \( z(p,q,r,s)\) and radius \( \sqrt{ w_{z(p,q,r,s)}^2 + w_t^2 }\) (which is equivalent to \( \Pi({t}^{(w)},{z(p,q,r,s)}^{(w)}) > 0 \)),ON_POSITIVE_SIDE if t lies inside this oriented sphere.The order of the points p, q, r and s is important, since it determines the orientation of the implicitly constructed power sphere.
p, q, r, s are not coplanar.If all the points have a weight equal to 0, then power_side_of_oriented_power_sphere_3(p,q,r,s,t) = side_of_oriented_sphere(p,q,r,s,t).